results <- read.csv( './Data/labelresultsAnts.csv' )
resultsSubset <- results[which( results$gender == 1 & results$age >= 6 & results$age <= 35 & results$handedness == 'R' ),]
drops <- c( "area.5th.ventricle", "area.left.lesion", "area.right.lesion", "area.left.vessel", "area.right.vessel", "area.optic.chiasm",
"volume.5th.ventricle", "volume.left.lesion", "volume.right.lesion", "volume.left.vessel", "volume.right.vessel", "volume.optic.chiasm",
"jacobian.5th.ventricle", "jacobian.left.lesion", "jacobian.right.lesion", "jacobian.left.vessel", "jacobian.right.vessel", "jacobian.optic.chiasm" )
resultsSubset <- resultsSubset[, !( names( resultsSubset ) %in% drops )]
# match the data based on age and fiq
library( MatchIt )
## Loading required package: MASS
resultsDf <- data.frame( subject.id = resultsSubset$subject.id,
dx.group = resultsSubset$dx.group,
age = resultsSubset$age,
fiq = resultsSubset$fiq
)
resultsDf$dx.group <- as.numeric( resultsDf$dx.group ) - 1
resultsDf <- na.omit( resultsDf )
resultsDf <- match.data( matchit( dx.group ~ age + fiq, data = resultsDf, method = "nearest", discard = "both" ) )
## Warning: Fewer control than treated units and matching without
## replacement. Not all treated units will receive a match. Treated units
## will be matched in the order specified by m.order: largest
resultsMatched <- resultsSubset[which( is.element( resultsSubset$subject.id, resultsDf$subject.id ) ), ]
write.csv( resultsMatched, './Data/labelresultsANTsSubset.csv', quote = FALSE, row.names = FALSE )
Total number of studies = 450
males = 450, females = 0
autism = 225, controls = 225
rights = 450, lefts = 0, ambis = 0
CALTECH: n = 11 (males = 11, females = 0)
CMU: n = 15 (males = 15, females = 0)
KKI: n = 27 (males = 27, females = 0)
LEUVEN_1: n = 25 (males = 25, females = 0)
MAX_MUN: n = 38 (males = 38, females = 0)
OHSU: n = 19 (males = 19, females = 0)
OLIN: n = 22 (males = 22, females = 0)
PITT: n = 36 (males = 36, females = 0)
SDSU: n = 22 (males = 22, females = 0)
STANFORD: n = 18 (males = 18, females = 0)
TRINITY: n = 43 (males = 43, females = 0)
UCLA_1: n = 53 (males = 53, females = 0)
UCLA_2: n = 18 (males = 18, females = 0)
UM_1: n = 50 (males = 50, females = 0)
UM_2: n = 27 (males = 27, females = 0)
YALE: n = 26 (males = 26, females = 0)
# Paper results
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( total.volume ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 635506407.47 | 635506407.47 | 0.04 | 0.8445 |
site | 15 | 2744732545213.81 | 182982169680.92 | 11.09 | 0.0000 |
age | 1 | 454992242535.23 | 454992242535.23 | 27.58 | 0.0000 |
fiq | 1 | 2332337220.80 | 2332337220.80 | 0.14 | 0.7071 |
Residuals | 431 | 7111246085396.22 | 16499410870.99 |
total.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.18 | 0.17 | 0.58 |
CMU | 0.74 | 0.94 | 0.85 |
KKI | 0.55 | 0.13 | 0.08 |
LEUVEN_1 | 0.93 | 0.26 | 0.26 |
MAX_MUN | 0.36 | 0.10 | 0.79 |
OHSU | 0.59 | 0.22 | 0.55 |
OLIN | 0.34 | 0.01 | 0.85 |
PITT | 0.46 | 0.38 | 0.75 |
total.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.03 | 0.01 | 0.97 |
STANFORD | 0.08 | 0.80 | 0.57 |
TRINITY | 0.73 | 0.35 | 0.25 |
UCLA_1 | 0.23 | 0.18 | 0.10 |
UCLA_2 | 0.51 | 0.39 | 0.03 |
UM_1 | 0.11 | 0.00 | 0.06 |
UM_2 | 0.90 | 0.69 | 0.98 |
YALE | 0.18 | 0.00 | 0.09 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( volume.right.amygdala ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 27789.06 | 27789.06 | 2.20 | 0.1391 |
site | 15 | 1635102.05 | 109006.80 | 8.61 | 0.0000 |
age | 1 | 387099.58 | 387099.58 | 30.59 | 0.0000 |
fiq | 1 | 3068.90 | 3068.90 | 0.24 | 0.6227 |
Residuals | 431 | 5454667.73 | 12655.84 |
volume.right.amygdala ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.56 | 0.13 | 0.77 |
CMU | 0.88 | 0.44 | 0.37 |
KKI | 0.91 | 0.05 | 0.40 |
LEUVEN_1 | 0.21 | 0.21 | 0.86 |
MAX_MUN | 0.65 | 0.01 | 0.96 |
OHSU | 0.85 | 0.06 | 0.61 |
OLIN | 0.78 | 0.04 | 0.18 |
PITT | 0.51 | 0.18 | 0.55 |
volume.right.amygdala ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.77 | 0.03 | 0.22 |
STANFORD | 0.66 | 0.68 | 0.68 |
TRINITY | 0.40 | 0.66 | 0.49 |
UCLA_1 | 0.00 | 0.20 | 0.03 |
UCLA_2 | 0.49 | 0.03 | 0.26 |
UM_1 | 0.99 | 0.06 | 0.54 |
UM_2 | 0.59 | 0.14 | 0.42 |
YALE | 0.10 | 0.04 | 0.39 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( volume.left.amygdala ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 16020.28 | 16020.28 | 1.16 | 0.2814 |
site | 15 | 1602296.82 | 106819.79 | 7.76 | 0.0000 |
age | 1 | 307290.75 | 307290.75 | 22.31 | 0.0000 |
fiq | 1 | 5151.07 | 5151.07 | 0.37 | 0.5412 |
Residuals | 431 | 5936259.02 | 13773.22 |
volume.left.amygdala ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.38 | 0.21 | 0.44 |
CMU | 0.52 | 0.69 | 0.76 |
KKI | 0.83 | 0.18 | 0.49 |
LEUVEN_1 | 0.42 | 0.80 | 0.95 |
MAX_MUN | 0.36 | 0.01 | 0.97 |
OHSU | 0.38 | 0.30 | 0.80 |
OLIN | 0.43 | 0.06 | 0.33 |
PITT | 0.45 | 0.32 | 0.46 |
volume.left.amygdala ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.21 | 0.09 | 0.73 |
STANFORD | 0.09 | 0.08 | 0.63 |
TRINITY | 0.35 | 0.26 | 0.55 |
UCLA_1 | 0.45 | 0.02 | 0.13 |
UCLA_2 | 0.62 | 0.26 | 0.27 |
UM_1 | 0.80 | 0.00 | 0.05 |
UM_2 | 0.07 | 0.38 | 0.95 |
YALE | 0.24 | 0.01 | 0.48 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( csf.volume ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 614627510.94 | 614627510.94 | 0.50 | 0.4808 |
site | 15 | 174831189871.42 | 11655412658.09 | 9.44 | 0.0000 |
age | 1 | 85957057583.14 | 85957057583.14 | 69.62 | 0.0000 |
fiq | 1 | 253881444.90 | 253881444.90 | 0.21 | 0.6504 |
Residuals | 431 | 532118740766.49 | 1234614247.72 |
csf.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.52 | 0.07 | 0.66 |
CMU | 0.33 | 0.40 | 0.91 |
KKI | 0.78 | 0.72 | 0.05 |
LEUVEN_1 | 0.75 | 0.05 | 0.22 |
MAX_MUN | 0.21 | 0.00 | 0.97 |
OHSU | 0.54 | 0.12 | 0.54 |
OLIN | 0.11 | 0.00 | 0.98 |
PITT | 0.81 | 0.00 | 0.80 |
csf.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.02 | 0.00 | 0.43 |
STANFORD | 0.15 | 0.95 | 0.84 |
TRINITY | 0.34 | 0.00 | 0.37 |
UCLA_1 | 0.54 | 0.05 | 0.10 |
UCLA_2 | 0.73 | 0.33 | 0.05 |
UM_1 | 0.30 | 0.00 | 0.01 |
UM_2 | 0.86 | 0.34 | 0.47 |
YALE | 0.69 | 0.00 | 0.93 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( gray.matter.volume ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 50521.73 | 50521.73 | 0.00 | 0.9971 |
site | 15 | 537930385772.23 | 35862025718.15 | 9.13 | 0.0000 |
age | 1 | 178841055.47 | 178841055.47 | 0.05 | 0.8311 |
fiq | 1 | 12633668.06 | 12633668.06 | 0.00 | 0.9548 |
Residuals | 431 | 1692807038204.71 | 3927626538.76 |
gray.matter.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.13 | 0.63 | 0.73 |
CMU | 0.98 | 0.70 | 0.93 |
KKI | 0.33 | 0.72 | 0.32 |
LEUVEN_1 | 0.92 | 1.00 | 0.23 |
MAX_MUN | 0.66 | 0.68 | 0.74 |
OHSU | 0.28 | 0.43 | 0.49 |
OLIN | 0.27 | 0.18 | 0.98 |
PITT | 0.30 | 0.21 | 0.83 |
gray.matter.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.06 | 0.22 | 0.68 |
STANFORD | 0.05 | 0.89 | 0.60 |
TRINITY | 0.90 | 0.42 | 0.35 |
UCLA_1 | 0.23 | 0.41 | 0.12 |
UCLA_2 | 0.51 | 0.10 | 0.06 |
UM_1 | 0.14 | 0.02 | 0.20 |
UM_2 | 0.99 | 0.86 | 0.63 |
YALE | 0.18 | 0.07 | 0.04 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( white.matter.volume ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 30934356.06 | 30934356.06 | 0.02 | 0.9002 |
site | 15 | 329596906415.16 | 21973127094.34 | 11.19 | 0.0000 |
age | 1 | 71081230366.45 | 71081230366.45 | 36.19 | 0.0000 |
fiq | 1 | 455050833.05 | 455050833.05 | 0.23 | 0.6305 |
Residuals | 431 | 846531930532.55 | 1964111207.73 |
white.matter.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.14 | 0.10 | 0.45 |
CMU | 0.80 | 0.64 | 0.79 |
KKI | 0.58 | 0.27 | 0.03 |
LEUVEN_1 | 0.74 | 0.11 | 0.31 |
MAX_MUN | 0.20 | 0.01 | 0.85 |
OHSU | 0.41 | 0.24 | 0.58 |
OLIN | 0.82 | 0.04 | 0.87 |
PITT | 0.37 | 0.10 | 0.66 |
white.matter.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.05 | 0.01 | 0.86 |
STANFORD | 0.09 | 0.25 | 0.99 |
TRINITY | 0.63 | 0.24 | 0.26 |
UCLA_1 | 0.25 | 0.34 | 0.50 |
UCLA_2 | 0.86 | 0.75 | 0.07 |
UM_1 | 0.12 | 0.00 | 0.26 |
UM_2 | 0.78 | 0.75 | 1.00 |
YALE | 0.20 | 0.01 | 0.05 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( deep.gray.matter.volume ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 4239503.15 | 4239503.15 | 0.24 | 0.6277 |
site | 15 | 603085508.77 | 40205700.58 | 2.23 | 0.0051 |
age | 1 | 378605809.44 | 378605809.44 | 21.04 | 0.0000 |
fiq | 1 | 11451993.28 | 11451993.28 | 0.64 | 0.4255 |
Residuals | 431 | 7757010099.65 | 17997703.25 |
deep.gray.matter.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.56 | 0.03 | 0.38 |
CMU | 0.98 | 0.86 | 0.92 |
KKI | 0.40 | 0.43 | 0.30 |
LEUVEN_1 | 0.58 | 0.14 | 0.90 |
MAX_MUN | 0.47 | 0.01 | 0.82 |
OHSU | 0.90 | 0.71 | 0.15 |
OLIN | 0.46 | 0.01 | 0.76 |
PITT | 0.83 | 0.93 | 0.47 |
deep.gray.matter.volume ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.30 | 0.04 | 0.83 |
STANFORD | 0.02 | 0.13 | 0.06 |
TRINITY | 0.28 | 0.81 | 0.05 |
UCLA_1 | 0.32 | 0.73 | 0.11 |
UCLA_2 | 0.99 | 0.80 | 0.48 |
UM_1 | 0.03 | 0.00 | 0.01 |
UM_2 | 0.92 | 0.81 | 1.00 |
YALE | 0.01 | 0.32 | 0.47 |
library( xtable )
results <- read.csv( './Data/labelresultsAntsSubset.csv' )
fit <- aov( total.mean.thickness ~ dx.group + site + age + fiq, data = results )
print( xtable( anova( fit ) ), type = "html" )
Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
---|---|---|---|---|---|
dx.group | 1 | 0.11 | 0.11 | 3.20 | 0.0742 |
site | 15 | 14.56 | 0.97 | 27.69 | 0.0000 |
age | 1 | 1.48 | 1.48 | 42.29 | 0.0000 |
fiq | 1 | 0.01 | 0.01 | 0.43 | 0.5136 |
Residuals | 431 | 15.10 | 0.04 |
total.mean.thickness ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
CALTECH | 0.28 | 0.67 | 0.44 |
CMU | 0.49 | 0.24 | 0.05 |
KKI | 0.73 | 0.85 | 0.16 |
LEUVEN_1 | 0.17 | 0.15 | 0.76 |
MAX_MUN | 0.35 | 0.00 | 0.65 |
OHSU | 0.19 | 0.50 | 0.67 |
OLIN | 0.50 | 0.00 | 0.48 |
PITT | 0.10 | 0.02 | 0.81 |
total.mean.thickness ~ dx.group + age + fiq
site | dx.Pvalue | age.Pvalue | fiq.Pvalue |
---|---|---|---|
SDSU | 0.91 | 0.53 | 0.42 |
STANFORD | 0.63 | 0.56 | 0.33 |
TRINITY | 0.24 | 0.22 | 0.98 |
UCLA_1 | 0.49 | 0.58 | 0.27 |
UCLA_2 | 0.35 | 0.01 | 0.33 |
UM_1 | 0.05 | 0.03 | 0.06 |
UM_2 | 0.94 | 0.38 | 0.47 |
YALE | 0.77 | 0.16 | 0.31 |
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
Pr(>|z|) | |
---|---|
(Intercept) | 0.00 |
siteCMU | 0.85 |
siteKKI | 0.35 |
siteLEUVEN_1 | 0.70 |
siteMAX_MUN | 0.15 |
siteOHSU | 0.16 |
siteOLIN | 0.33 |
sitePITT | 0.56 |
siteSDSU | 0.28 |
siteSTANFORD | 0.70 |
siteTRINITY | 0.37 |
siteUCLA_1 | 0.46 |
siteUCLA_2 | 0.30 |
siteUM_1 | 0.26 |
siteUM_2 | 0.10 |
siteYALE | 0.29 |
age | 0.13 |
fiq | 0.01 |